User Tools

Site Tools


urp:physrot

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
urp:physrot [2021-11-08]
nerf_herder
urp:physrot [2021-11-08]
nerf_herder
Line 1: Line 1:
 =====Rotation===== =====Rotation=====
  
- +Tension ​on rope being swung = force, centripetal force
-tension ​on rope being swung = force, centripetal force+
 F = m * v^2/r F = m * v^2/r
-4 kg, 2 meter rope, v = 5 m/s +Example: 
-F = 4 * 25/2 = 50 +  ​4 kg, 2 meter rope, v = 5 m/s 
----> now need to subtract gravity, for instance at the top of the swing +  F = 4 * 25/2 = 50 
-     ​50 - 4*9.8 +  ---> now need to subtract gravity, for instance at the top of the swing 
 +    50 - 4*9.8 
  
 https://​www.wikihow.com/​Calculate-Tension-in-Physics https://​www.wikihow.com/​Calculate-Tension-in-Physics
  
--------+====Pendulum====
  
 simple pendulum: simple pendulum:
-T = 2pi * (L/g)^0.5 (T = time, L = length, g = gravity) +T = 2π (L/g) (T = time, L = length, g = gravity) 
-(T/2pi)^2 = L/g+(T/2π)² = L/g
  
-potential energy: U = 1/2 kx^2 (spring), or P = mgh (at mass at some height) +potential energy: U = 1/2 kx² (spring), or P = mgh (at mass at some height) 
-kinetic energy: ​  K = 1/2 mv^2+kinetic energy: ​  K = 1/2 mv²
  
 Change in potential energy is given by Change in potential energy is given by
 U=mgh U=mgh
-Joule = kg * m^2/s^2+Joule = kg * /
  
-------- +====Pivot==== 
-force on a pivot = moment +  ​* ​force on a pivot = moment 
-moment = f * d (distance) +  ​* ​moment = f * d (distance) 
-(greek letter omega) = angular velocity, ​ + 
-    ​measured in rpm, or rads (2pi rads in a circle) +  ω (greek letter omega) = angular velocity, measured in rpm, or rads (2π rads in a circle) 
-2pi/T = 2pi*f  T = time for full rotation, f = frequency +  ​ω ​/T = *f  T = time for full rotation, f = frequency 
-  = delta theta / delta t +    = delta theta / delta t 
-v = rw (v is distance, not radians)+  v = rω (v is distance, not radians
 + 
 +====Moment of Inertia==== 
 +I = moment of inertia (rotational inertia), resistance to angular acceleration,​ units = kg * m² 
 + 
 +Depends on arrangement of mass about the point of rotation, distance from point of rotation = the radius R (sometime L, or d for distance)
  
-I = moment of inertia (rotational inertia), resistance to angular acceleration 
-  depends on arrangement of mass about the point of rotation 
-  distance from point of rotation = the radius R (sometime L, or d for distance) 
-   units = kg * m^2 
 I for: I for:
-   point mass         I = MR^2 +   point mass         I = MR² 
-   solid cylinder ​    I = 1/2 * MR^2 +   solid cylinder ​    I = 1/2 * MR² 
-   solid sphere ​      I = 2/5 * MR^2 +   solid sphere ​      I = 2/5 * MR² 
-   thin shell sphere ​ I = 2/3 * MR^2 +   thin shell sphere ​ I = 2/3 * MR² 
-   hoop (around axis) I = MR^2 +   hoop (around axis) I = MR² 
-   hoop (on end?)     I = 1/2 * MR^2 +   hoop (on end?)     I = 1/2 * MR² 
-   rod (rotating from one end) I = 1/3 * MR^2 +   rod (rotating from one end) I = 1/3 * MR² 
-   rod (centered on axis)      I = 1/12 * MR^2+   rod (centered on axis)      I = 1/12 * MR²
  
-fr (torque), (technically cross product r x f, or r x (m*alpha x r)  +τ f*r (torque), (technically cross product r x f, or r x (m*α x r)  
-= I*alpha+τ = I*α
  
 If an object is a composite object, simply sum the inertial masses together If an object is a composite object, simply sum the inertial masses together
  
-(torque, Greek tau) = Ia  (a = acceleration),​ units are Nm (Newton-meters) +τ (torque, Greek tau) = Ia  (a = acceleration),​ units are Nm (Newton-meters) 
-Ia is rotational equivalent to f = ma (many parallels to linear forces, etc) +τ Iα is rotational equivalent to f = ma (many parallels to linear forces, etc) 
-Angular Momentum L = Iw +Angular Momentum L =  
-  If L1 is angular momentum of ice skater with arms out: +  If L₁ is angular momentum of ice skater with arms out: 
-     the velocity (w) is low, but I is big +     the velocity (ω) is low, but I is big 
-  If L2 is with skater with arms in: +  If L₂ is with skater with arms in: 
-     ​velocity is higher, I is smaller.  ​L1 L2 for conservation of energy+     ​velocity is higher, I is smaller.  ​L₁ L₂ for conservation of energy
  
 Oddly, can also have angular momentum of a linearly moving object past another object Oddly, can also have angular momentum of a linearly moving object past another object
- L = ->r x ->p (cross product of vectors r and p +  ​L = ->r x ->p (cross product of vectors r and p 
-   ​= r * p * sin(theta+    = r * p * sin(θ
-   ​r = hypotenuse, p is +    r = hypotenuse, p is 
  
-cross product of vectors: ->A x ->B = ||->A|| ||->B|| sin(theta+cross product of vectors: ->A x ->B = ||->A|| ||->B|| sin(θ
-dot product of vectors: ​  ​->​A . ->B = ||->A|| ||->B|| cos(theta)+dot product of vectors: ​  ​->​A . ->B = ||->A|| ||->B|| cos(θ)
   ||->A|| = magnitude (norm) of vector A, sometimes written with single bars   ||->A|| = magnitude (norm) of vector A, sometimes written with single bars
  
-rotational ​kinetic energy: +**Rotational ​kinetic energy:** 
-  E = 1/2*I*w^2  ​(similar to E = 1/2 mv^2 for linear kinetic energy) +Total kinetic energy of a rolling marble is the linear kinetic energy of it moving plus the rotational energy 
- total kinetic energy of a rolling marble is the linear kinetic energy of it moving +  E = 1/2*I*ω²  ​(similar to E = 1/2 mv² for linear kinetic energy)
-  plus the rotational energy+
  
 A number of similar articles on this on one page:  A number of similar articles on this on one page: 
 https://​sciencing.com/​rotational-kinetic-energy-definition-formula-units-w-examples-13720802.html https://​sciencing.com/​rotational-kinetic-energy-definition-formula-units-w-examples-13720802.html
  
-tangential ​acceleration = acceleration * radius +**Tangential ​acceleration** = acceleration * radius 
-a = delta w/delta t+a = Δω/Δt
  (a = angular acceleration) in rad/s^2  (a = angular acceleration) in rad/s^2
-rolling object picks up angular inertia as it accelerates,​ so an object rolling +rolling object picks up angular inertia as it accelerates,​ so an object rolling down an incline will have a final velocity less than a frictionless object that does not roll
- down an incline will have a final velocity less than a frictionless object that +
- does not roll+
  See: https://​www.asc.ohio-state.edu/​gan.1/​teaching/​spring99/​C12.pdf  See: https://​www.asc.ohio-state.edu/​gan.1/​teaching/​spring99/​C12.pdf
  
-translational ​motion: movement of the center of mass for a rolling object+**Translational ​motion:** movement of the center of mass for a rolling object
 Two ways of looking at it:  Two ways of looking at it: 
   1) rolling object has combination of rotational and translational motion   1) rolling object has combination of rotational and translational motion
-  2)  ""​ object rotates around the contact point with the ground, ​ +  2)  ""​ object rotates around the contact point with the ground, but this point continuously changes ... not as easy concept to grasp 
-     but this point continuously changes ... not as easy concept to grasp + 
-distance s = r*theta  (theta in radians) +  ​distance s = r*θ  (θ in radians) 
-  v = delta theta/delta time,  (velocity of center of mass)+  v = Δ θ/Δ time,  (velocity of center of mass)
   v = rw   v = rw
- velocity of a point on a disk is velocity relative to center of mass, plus+  ​velocity of a point on a disk is velocity relative to center of mass, plus
   velocity of center of mass:   velocity of center of mass:
   Vpt = Vrel + Vcm   Vpt = Vrel + Vcm
- If disk is rolling on ground, when point is at the top of the disk, Vrel = Vcm +  ​If disk is rolling on ground, when point is at the top of the disk, Vrel = Vcm 
- so Vpt = 2Vcm. Conversely, when in contact with the ground, Vrel = -Vcm,  +  so Vpt = 2Vcm. Conversely, when in contact with the ground, Vrel = -Vcm,  
- so vPt = 0.+  so vPt = 0.
  
  
----------- +====Optics==== 
-Optics: +Refraction ​on going into a different medium 
- refraction ​on going into a different medium +  
- ​Snell'​s law +**Snell'​s law**  
-   sin(theta1) / sin(theta2) = v1/v2 n2/n1  (note that the n values are reversed)+   sin(θ₁) / sin(θ₂) = v₁/v₂ n₂/n1  (note that the n values are reversed)
    v = velocity of light in that medium, n = index of refraction    v = velocity of light in that medium, n = index of refraction
    v = c/n  (c = speed of light in a vacuum)    v = c/n  (c = speed of light in a vacuum)
    it bends towards the normal direction when entering denser material    it bends towards the normal direction when entering denser material
    (and slows down). bend is because photons are waves.    (and slows down). bend is because photons are waves.
- Critical angle : smallest angle that results in total reflection, no refraction +    
-   thetaC ​= arcsin(n2/n1)+   Critical angle : smallest angle that results in total reflection, no refraction 
 +   θc = arcsin(n₂/n₁)
  
  
 ------- -------
 Back to [[Physics]] page or [[00_start|Start]] page. Back to [[Physics]] page or [[00_start|Start]] page.
urp/physrot.txt · Last modified: 2021-11-08 by nerf_herder