=====Trigonometry===== transformations of sine or cosine function: y = a * sin(b(x - c)) + d {{:urp:sinewave.jpg?418|Sine Wave Transformations}} (Graphics from www.Desmos.com, labeling was added) a = amplitude, c = phase shift, d = vertical shift, 2π/b = period (for tan the period is π/b) ==== Sin/Cos table ==== ^ Radians ^ Degrees ^ Cos ^ Sin ^ | **0** | 0 | 1 | 0 | | π/6 | 30 | √3/2 | 1/2 | | π/4 | 45 | √2/2 | √2/2 | | π/3 | 60 | 1/2 | √3/2 | | **π/2** | 90 | 0 | 1 | | 2π/3 | 120 | -1/2 | √3/2 | | 3π/4 | 135 | -√2/2 | √2/2 | | 5π/6 | 150 | -√3/2 | 1/2 | | **π** | 180 | -1 | 0 | | -5π/6, 7π/6 | 210 | -√3/2 | -1/2 | | -3π/4, 5π/4 | 225 | -√2/2 | -√2/2 | | -2π/3, 4π/3 | 240 | -1/2 | -√3/2 | | **-π/2, 3π/2** | 270 | 0 | -1 | | -π/3, 5π/3 | 300 | 1/2 | -√3/2 | | -π/4, 7π/4 | 315 | √2/2 | -√2/2 | | -π/6, 11π/6 | 330 | √3/2 | -1/2 | | **0, 2π** | 360 | 1 | 0 | ==== Conversion Theorems ==== double angle: 2θ sin(2θ) = 2sin(θ)cos(θ) cos(2θ) = cos²(θ) - sin²(θ) = 2*cos²(θ) - 1 = 1 - 2*sin²(θ) negative angles: sin(-θ) = -sin(θ) cos(-θ) = cos(θ) tan(-θ) = -tan(θ) additive, subtractive: sin(a+b) = sin(a)cos(b) + cos(a)sin(b) cos(a+b) = cos(a)cos(b) - sin(a)sin(b) sin(a-b) = sin(a)cos(b) - cos(a)sin(b) cos(a-b) = cos(a)cos(b) + sin(a)sin(b) complements: sin(θ) = cos(π/2 - θ) cos(θ) = sin(π/2 - θ) === See also === * https://www2.clarku.edu/faculty/djoyce/trig/identities.html * 11 pages of definitions, postulates and theorems: http://www.ouchihs.org/ourpages/auto/2013/7/26/52822673/Geo-PostulatesTheorems-List.pdf Back to [[math]] page.