transformations of sine or cosine function: y = a * sin(b(x - c)) + d
(Graphics from www.Desmos.com, labeling was added) a = amplitude, c = phase shift, d = vertical shift, 2π/b = period (for tan the period is π/b)
Radians | Degrees | Cos | Sin |
---|---|---|---|
0 | 0 | 1 | 0 |
π/6 | 30 | √3/2 | 1/2 |
π/4 | 45 | √2/2 | √2/2 |
π/3 | 60 | 1/2 | √3/2 |
π/2 | 90 | 0 | 1 |
2π/3 | 120 | -1/2 | √3/2 |
3π/4 | 135 | -√2/2 | √2/2 |
5π/6 | 150 | -√3/2 | 1/2 |
π | 180 | -1 | 0 |
-5π/6, 7π/6 | 210 | -√3/2 | -1/2 |
-3π/4, 5π/4 | 225 | -√2/2 | -√2/2 |
-2π/3, 4π/3 | 240 | -1/2 | -√3/2 |
-π/2, 3π/2 | 270 | 0 | -1 |
-π/3, 5π/3 | 300 | 1/2 | -√3/2 |
-π/4, 7π/4 | 315 | √2/2 | -√2/2 |
-π/6, 11π/6 | 330 | √3/2 | -1/2 |
0, 2π | 360 | 1 | 0 |
double angle: 2θ
sin(2θ) = 2sin(θ)cos(θ) cos(2θ) = cos²(θ) - sin²(θ) = 2*cos²(θ) - 1 = 1 - 2*sin²(θ)
negative angles:
sin(-θ) = -sin(θ) cos(-θ) = cos(θ) tan(-θ) = -tan(θ)
additive, subtractive:
sin(a+b) = sin(a)cos(b) + cos(a)sin(b) cos(a+b) = cos(a)cos(b) - sin(a)sin(b) sin(a-b) = sin(a)cos(b) - cos(a)sin(b) cos(a-b) = cos(a)cos(b) + sin(a)sin(b)
complements:
sin(θ) = cos(π/2 - θ) cos(θ) = sin(π/2 - θ)
Back to math page.