User Tools

Site Tools


urp:physgen

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revision Both sides next revision
urp:physgen [2021-10-17]
nerf_herder created
urp:physgen [2021-11-16]
nerf_herder
Line 1: Line 1:
-==== General Physics ==== +===== General Physics =====
-  * [[#​Newton'​s 3 laws]] +
-  * [[#​displacement,​ time, velocity, acceleration]] +
-  * [[#inclined plane]] +
-  * [[#​Spring]] +
-  * [[#​Projectile fired at an angle]] +
-  * [[#Buoyant force]] +
-  * [[#​Gravity]] +
-  * [[#​Kinematics]] +
-  * [[#​Miscellaneous]]+
  
-===Newton'​s 3 laws===+====Newton'​s 3 laws====
   1) objects in motion stay in motion, a body at rest stays at rest, until a force is applied ("law of inertia"​)   1) objects in motion stay in motion, a body at rest stays at rest, until a force is applied ("law of inertia"​)
   2) change in momentum of a body is equal in magnitude and direction to the force applied to it (force = mass * acceleration)   2) change in momentum of a body is equal in magnitude and direction to the force applied to it (force = mass * acceleration)
   3) when two bodies interact, they apply forces that are equal to each other, and opposite in direction ("law of action and reaction"​)   3) when two bodies interact, they apply forces that are equal to each other, and opposite in direction ("law of action and reaction"​)
  
-F=ma +Basic definitions: 
-newton:  ​1N = 1kg * m / s^2 (the force needed to accelerate 1kg at 1 m/s^2)+  * Force is in newtons or pounds. One newton ​= 1kg * m / s² (the force needed to accelerate 1kg at 1 m/s²) 
 +    * f = ma 
 +  * Momentum is p 
 +    * p = mv 
 +  * energy = work (joules) = force * distance 
 +    * J = F*d = applying 1 newton for 1 meter (units of kg * m²/s²) 
 +    * F = J/d 
 +  * power = work/time (joules/sec or watts
  
-Fulcrum: t r * f  ​(torque ​radius * force) +Fnet Δp / Δt (since p = mv and Δv/​Δtime ​acceleration)
-just add the torques for multiple objects on one side of a fulcrum+
  
-Momentum ​is p +Change in potential energy ​is given by U=mgh 
-  ​mv +  ​* potential energy:  
-  ​Fnet delta p delta t+    * U = 1/2 kx² (spring), or  
 +    * P mgh (at mass at some height, even on an inclined plane) 
 +  ​* kinetic energy: ​  ​K ​1/2 mv²
  
-J = F*d = 1 newton for 1 meter = kg * m^2/s^2 
-F=J/d 
-energy = work (joules) = force * distance 
-kinetic energy = 1/2 * mv^2 
  
-Change in potential energy is given by +**dimensional homogeneity** - units must be correct for parts added together, left side matches right side, etc.
-U=mgh +
-Joule = kg m^2/s^2+
  
-dimensional homogeneity - units must be correct, parts added together, left side matches right side, etc. 
  
 +====Distance,​ time, velocity, acceleration====
 +Displacement is change in position.
 +  s(t) = s0 + t*(v0+vt)/2
 +    s = displacement from origin at time t
 +  vt = v0 + a*t
 +  if v0 = 0 then
 +    s(t) = s0 + t²*(a)/2
 +  so in free-fall, from position 0, you have:
 +    s(t) = g * t²/2
  
-===displacement,​ time, velocity, acceleration=== 
  
- ​s(t) ​s0 + t*(v0+vt)/​2 +====Collisions====
-s=displacement from origin at time t +
- ​vt ​v0 + a*t +
-if v0 0 then +
- ​s(t) ​s0 + t^2*(a)/2 +
-so in free-fall, from position 0, you have: +
- ​s(t) ​g * t^2/2+
  
 +  * **elastic**:​ Two objects bounce off each other. ​ Kinetic energy, momentum conserved, no other energy created
 +  * **inelastic** Two objects stick to each other. Momentum conserved, kinetic energy is not conserved (some energy converted to heat, sound, etc.)
  
-==collisions==+**coefficient of restitution** ​ratio of energy conserved after collision 
 +    e (vel. after collision) / (vel. before collision) 
 +     (for collision with immovable object) 
 +    e (Vfa * Vfb) / (Via * Vib) 
 +     (for collision between objects a and b. f final, i = initial velocity) 
 +    e = 1 for perfectly elastic, 0 for perfectly inelastic
  
-elastic: two objects bounce off each other +**conservation of momentum**: p1i + p2i = p1f + p2f
-   ​kinetic energy, momentum conserved, no other energy created +
-inelastic: two objects stick to each other +
-   ​momentum conserved,  +
-   ​kinetic energy is not conserved (some energy converted to heat, sound, etc.) +
-conservation of momentum: p1i + p2i = p1f + p2f+
   for m1 having velocity u1 to the right, m2 initially at rest, ends with velocity v2.   for m1 having velocity u1 to the right, m2 initially at rest, ends with velocity v2.
     x dimension: m1u1 = m1u2cosθ1 + m2v2cosθ2     x dimension: m1u1 = m1u2cosθ1 + m2v2cosθ2
     y dimension: ​  ​0 ​ = m1u2sinθ1 - m2v2sinθ2     y dimension: ​  ​0 ​ = m1u2sinθ1 - m2v2sinθ2
  
-glancing ​blowif both masses are equal (like billiards):  +Glancing ​blow: If and only if both masses are equal (like billiards), then the angle between the resulting vectors is always 90 degrees.
-  ​angle between the resulting vectors is always 90 degrees+
  
- +====Inclined plane====
-===Inclined plane===+
   normal force = force perpendicular to the plane   normal force = force perpendicular to the plane
-  normal force on a block resting on a slope: +  normal force on a block resting on a slope, θ = degrees from horizontal
-  f = m*g*cos(degrees from horizontal)+    f = m*g*cos(θ)
   parallel force = force parallel to the inclined plane   parallel force = force parallel to the inclined plane
-   it is unbalanced ​(objects will move down the plane), sometimes called ​net force +    f = m*g*sin(θ) 
-  ​f ​m*g*sin(theta)+  When parallel force > friction, ​it is unbalanced ​and objects will move down the plane 
 +  Applied force - friction = net force 
 + 
 +====Friction==== 
 +Coefficient of friction  
 +  ​μ = f/​N  ​(force applied divided by Normal force) 
 +  * fNet = fApp - Ffriction
  
   static friction -    static friction - 
-    ​uS (mu static) = fS/N +    ​μS (mu static) = fS/N 
         (fS = force where static friction is overcome         (fS = force where static friction is overcome
           N = normal force) must be overcome before the mass moves           N = normal force) must be overcome before the mass moves
-    ​uS = fs/N = m*g*sin(theta) / m*g*cos(theta) = sin(theta)/cos(theta) = tan(theta+    ​μS = fs/N = m*g*sin(θ) / m*g*cos(θ) = sin(θ)/cos(θ) = tan(θ
-  kinetic friction - normal ​moving friction+  kinetic friction - moving friction
    only one type of friction applies at a time    only one type of friction applies at a time
  
-==Spring== 
-Hooke'​s law: F=-kx, k=spring constant, x = displacement 
  
-===Projectile fired at an angle=== +====Projectile fired at an angle==== 
- Vx = Vo*cos(theta+  Vx = Vo*cos(θ
- Vy = Vo*sin(theta) - gt +  Vy = Vo*sin(θ) - gt 
- x = Vx*t +  x = Vx*t 
- y = Vy*t - (1/2)*g*t^2+  y = Vy*t - g*t²/2 
 projectile follows the shape of a parabola projectile follows the shape of a parabola
- y = Ax^2 + Bx +  ​y = Ax² + Bx 
- y = -gx^2/(2(VoCos(theta))^2) + xtan(theta+  y = -gx²/(2(VoCos(θ))²) + xtan(θ
-time of flight: +  time of flight: t = 2Vosin(θ)/g 
- t = 2Vosin(theta)/g +  max height: H = (Vosin(θ))²/2g 
-max height: +  distance: x = sin(2*θ)*Vo² / g
- H = (Vosin(theta))^2/2g +
-distance: +
- x = sin(2*theta)*Vo^2 / g+
  
- Vo = initial velocity +  ​Vo = initial velocity 
- They use 2sin(theta)cos(theta) = sin(2theta)+  ​Can ​use 2sin(θ)cos(θ) = sin()
    if filling in t with time of flight in the x = Vx*t formula    if filling in t with time of flight in the x = Vx*t formula
  
-Vf^2 Vi^2 + 2ad  ?+Vf² Vi² + 2ad  ?
  
-===Buoyant force===+====Buoyant force====
 pressure P = F/A (force/​area) pressure P = F/A (force/​area)
 +
 hydrostatic gauge pressure: ​ P = pgh, p = density of fluid, g=gravity, h=height (depth) hydrostatic gauge pressure: ​ P = pgh, p = density of fluid, g=gravity, h=height (depth)
 +
 buoyant force Fb = Fup - Fdown buoyant force Fb = Fup - Fdown
   Fb = pgVf,  where Vf = volume of displaced fluid, and density * volume = mass, so   Fb = pgVf,  where Vf = volume of displaced fluid, and density * volume = mass, so
   Fb = mf*g,  where mf = mass of displaced fluid   Fb = mf*g,  where mf = mass of displaced fluid
- => buoyant force depends on mass of displaced fluid, not the mass of the object+  ​=> buoyant force depends on mass of displaced fluid, not the mass of the object
    
-===Gravity===+====Gravity====
 gravitational constant between two bodies gravitational constant between two bodies
-F = G * m1 * m2 / r^2 +  ​F = G * m1 * m2 /  
-  and g = G * m1 / r^2 +  and g = G * m1 /  
-  gE (gravity Earth) ​ = 9.8 m/s^2+  gE (gravity Earth) ​ = 9.8 m/
  
  
-===Kinematics===+====Kinematics====
 no use of forces in the equations no use of forces in the equations
   typical equations:   typical equations:
-     d = vo*t + 1/2*a*t^2+     d = vo*t + 1/2*a*
      d = (vo + vf)/2 * t      d = (vo + vf)/2 * t
-  vf^2 vo^2 + 2ad+    vf²vo² + 2ad
     vf = v0 + at     vf = v0 + at
  
- ​coefficient of restitution = ratio of energy conserved after collision 
-    e = (vel. after collision) / (vel. before collision) 
-     (for collision with immovable object) 
-    e = (Vfa * Vfb) / (Via * Vib) 
-     (for collision between objects a and b. f = final, i = initial velocity) 
-    e = 1 for perfectly elastic, 0 for perfectly inelastic 
  
-===Miscellaneous=== +====Optics==== 
-IV = independent variable ​ +Refraction on going into a different medium 
-     - the variable you control, typically x axis +  
-DV = dependent variable  +**Snell'​s law**  
-     - the variable measured (changes because of the experiment) y axis+   ​sin(θ₁) / sin(θ₂) = v₁/v₂ = n₂/​n₁ ​ (note that the n values are reversed) 
 +   v = velocity of light in that medium, n = index of refraction 
 +   v = c/n  (c = speed of light in a vacuum) 
 +   it bends towards the normal direction when entering denser material 
 +   (and slows down). bend is because photons are waves. 
 +    
 +   ​Critical angle : smallest angle that results in total reflection, no refraction 
 +   θc = arcsin(n₂/​n₁) 
 + 
 + 
 +====Miscellaneous===
 + 
 +IV = independent variable - the variable you control, typically x axis
  
-potential energy: U 1/2 kx^2 (spring), or P = mgh (at mass at some height) +DV dependent variable - the variable measured ​(changes because of the experimenty axis
-  (P = m*h*g even on an inclined plane) +
-kinetic energy: ​  K = 1/2 mv^2+
  
 +FBD = free body diagram - a drawing of mass and all the forces that are applied to it.
  
 Back to the [[physics]] page or the [[00_start|start]] page. Back to the [[physics]] page or the [[00_start|start]] page.
urp/physgen.txt · Last modified: 2022-02-01 by nerf_herder